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ABSTRACT 

 

Over the past few years, companies have been offring a variety 

of functionalities through Web services as part to stay 

competitive. Meanwhile, the customers may face challenges 

in choosing a service that meets their requirements due to the 

similarity of functionalities. Moreover, the customers’ 

requests often emerge with a complex nature in an uncertain 

environment that is rarely fulfilled by an atomic service. 

Hence, there is a necessity for optimizing service composition 

based on Quality of Service (QoS) with taking into account 

environmental uncertainty. To attain the mentioned goal, our 

proposed approach adopts a local and global optimization 

strategies. Firstly, we adopt a heuristic based on the Entropy, 

Cross-Entropy, and the deviation degree for the hesitant fuzzy 

set to rank similar Web services. Afterwards, we introduce an 

improved metaheuristic called Group Leaning based 

Composition as a global optimization for selecting the near-

optimal composition. 

 

Key words : Deviation degree, Global Optimization, Group 

learning metaheuristic, Hesitant fuzzy set, Local 

Optimization, Service Composition, Quality of Service, Web 

Service. 

 

1. INTRODUCTION 

 

Web services becomes a pillar in providing several solutions 

in different vital areas, such as Electronic Health, e-

government, scientific workflows, and Internet of Things 

environments (e.g., smart cities). This proliferation is 

                                                           

 

attributed to the collaboration between the modular services 

that occur without requiring knowledge of the internal 

implementation details. The collaboration results in a 

combination commonly referred as the service composition. 

In fact, the service composition based on QoS is considered as 

a Single-Objective or a Multi-Objective Optimization [11]. 

This optimization is recognized as NP hard problem, 

Attracting the attention of many recent researches 

[6],[12],[17],[18],[19],[25].  The primary challenge is the 

large number of concurrent services that offer similar 

functionalities. On the other hand, the composition must 

respect the user requirement, called the global constraints. 

Consequently, the composition process depends on the 

nonfunctional features known as Quality of Service. For 

instance, a user can request for an online product purchase 

with specific requirement for cost, response time, and fidelity. 

This request can be a combination of multiple services such as 

the research of products, the currency exchange service, and 

the payment services. Each one can be proposed by multiple 

concurrent providers with different QoS. In this case, the QoS 

is a fundamental key to select the most relevant services, 

forming a composition set, and determining the pertinent 

composition that will satisfy the user’s constraints.  In the 

current state of the art, although various approaches and 

frameworks have been employed to tackle these challenges, 

we observe that the most of them treat QoS as static values 

that impact the both service selection and the resulting 

composition. Meanwhile, this process occurs in a fluctuating 

environment, influenced by factors such as involving network 

conditions, work-loads, etc… These factors impact on QoS 

throughout the process, emphasizing the inherent uncertainty 

and variability of QoS. For instance, the response time of 
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delivery service changes based on some factors like server 

load or network traffic.  

Therefore, in this paper we aim to address three aspects. First, 

inspired by [30], we manage the nondeterministic QoS during 

the composition process by leveraging the hesitant fuzzy set. 

Then, we enhance the heuristic proposed by [30] by 

incorporating Cross-entropy for hesitant fuzzy set to minimize 

the search space by adding the deviation degree. Finally, we 

introduce the Group Leaning-based Composition (GLC) to 

select the service composition that respect the user’s 

requirements. Furthermore, we utilize Global Quality 

Conformance (GQC) [15] (see Equation 1) as utility function 

to handle the nondeterministic QoS. 

 

1.1 Contribution 

Our contribution can be summarized in threefold:  

1. We compute the weight of each attribute based on the 

Entropy. Furthermore, we rank the services, then we 

retrieve the TOP-K services according to Cross-Entropy. 

In this step, the QoS attributes are considered as hesitant 

fuzzy elements [26],[28].  

2. We propose Group Learning-based Composition GLC) to 

select the near-optimal composition using the 

metaheuristic called GLA. 

3.  We perform a set of experiments that show the 

effectiveness and efficiency of the proposed approach.  

The remainder of this paper is organized as follow: Section 

2 provides an overview of related works. In Section 3, 

introduces notations and concepts, while Section 4 outlines 

the proposed framework. The conclusion is presented in 

Section 5. 

 

2. STATE OF THE ART 

 

The QoS-based service selection and/ or composition 

approaches has been addressed by multiple researches. 

Meanwhile, the uncertain environment is often overlooked 

and the QoS attributes are considered as static values. 

 

2.1 Web service composition based on certain QoS 

 

In [4], the authors handled web service composition in a multi-

cloud environment through a two-step process. Firstly, they 

employed a cloud combiner to select an optimal combination 

from the available multi-cloud providers. Then, they 

leveraged an Intelligent Water Drops (IWD) algorithm, which 

considers quality of service (QoS) parameters, for the service 

composition. 

The authors in [8] proposed an improved genetic algorithm 

(IGA)for web service composition optimization based on QoS 

and user needs. In this approach, the lexicographic 

optimization method (LOP) and the threshold constraint 

relaxation technique (TCR) are employed to eliminate the 

concurrent web service with lower QoS. Furthermore, the web 

service composition problem is transformed into a single-

objective optimization problem, and an elitist genetic 

algorithm is adopted search global optimal solution satisfying 

the demand of user. 

The work by [29] optimized the Web service composition by 

introducing an enhanced Firefly algorithm. This approach 

integrates the principle of selection, exchange, and mutation 

in the genetic algorithm into the traditional firefly algorithm, 

resulting in a population solution that approaches the optimal 

solution.  The approach proposed in [22], handle the Service 

composition mechanism in the Internet of Things based on 

QoS. This approach is based on a hidden Markov model 

(HMM) and an ant colony optimization (ACO). Furthermore, 

the emission and transition matrices have been improved 

using the Viterbi algorithm.  The work by [3] proposed a 

service composition approach for the multi-cloud 

environment. The approach is based on the ant colony 

optimization algorithm (ACO) leveraging the multi-

pheromone mechanism to optimize the quality of service 

(QoS). Further, the mutation operation of the genetic 

algorithm is utilized to prevent the slow convergence speed 

and the occurrence of local optima. 

A new hybrid algorithm was proposed in [13], based on the 

Artificial Bee Colony (ABC) and Cuckoo Search (CS). The 

Cuckoo Search is used to overcome the ABC’s limitations 

such as the slow convergence problem. The work in [14] deals 

with Web Service Composition (WSC) problem by leveraging 

an improved version of the Bat Algorithm (BA) by addressing 

certain limitations, such as the trade-off among exploration 

and exploitation searching mechanisms. Firstly, a population 

initialization method is proposed to avoid the bad initialization 

that leads to premature convergence. Furthermore, an elitist 

method is leveraged to achieve a better convergence rate. 

Finally, the neighborhood method is utilized to achieve a 

better tradeoff between search mechanisms. 

The work by [30] introduces a Multi-Criteria Decision 

Making (MCDM) approach that integrates Best Worst 

Method (BWM) to determine the weights of criteria and 

relative scores for alternatives. Furthermore, the authors 

leverage Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS) to rank cloud services. 

In [14], the authors proposed a hybrid approach that merges 

the Artificial Neural Network (ANN) with the meta-heuristic 

PSO algorithm for a service composition model in Cloud-edge 

computing. Furthermore, they introduced a formal verification 

method based on a labelled transition system to assess Linear 

Temporal Logics (LTL) formulas, aiming to enhance the 

proposed ANN-PSO and ensure its correctness. This approach 

focuses on managing three Quality of Service (QoS) 

attributes: response time, availability, and prices. 

2.2 Web service composition based on uncertain QoS 

The service composition in a multi-Cloud environment is 

tackled in [13]. The approach revolves around a modified PSO 

designed to compose the best services based on the uncertainty 

of the QoS attributes.  

In the [24], the authors improve the artificial bee colony 

algorithm (ABC) by using a fuzzy distance and ranking 

methods to enhance the artificial bee colony algorithm 

diversity (FDMOABC). Subsequently, they presented a fuzzy 

multi-criteria decision-making method (FMCDMM) to 

identify the optimal composite service from the Pareto-

optimal solutions generated by FDMOABC. The work by [23] 

leveraged an interval-based multi-objective artificial bee 
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colony algorithm (IM_ABC) to deal with the uncertain QoS-

aware service-composition problem QWSCP. Firstly, the 

authors compared the services using interval-oriented 

dominance relationship, where the intervals represent the 

variation range of the QoS attributes. Then, they leveraged an 

interval-valued utility function to assess the uncertain quality 

of a composition. Finally, the authors employed an improved 

version of NSGA-II to derive the non-dominated service 

compositions. Multiple probabilistic heuristics and fuzzy 

formulas was leveraged in [11] to address the service selection 

in a fluctuating environment. Then, based on the Top-K 

services, a constraint programming approach is employed to 

select the Top-K optimal compositions of the services. 

Likewise, the authors in [9] proposed four ranking heuristics 

that perform a pairwise comparison of services and select the 

most pertinent ones. Then, based on the swarm-intelligence-

based algorithm called discrete bat algorithm (DBA) they 

performed the selection of the near-optimal composition. 

In [27], the authors leverage a new approach called the 

triangular fuzzy genetic algorithm (TGA), where the 

triangular fuzzy set theory (FST) is combined with genetic 

algorithm (GA) to solve the uncertain QWSCP. To deal with 

the uncertain QoS, the authors in [18] proposed two 

approaches based on the definition of intuitionistic fuzzy 

logic. The first approach characterizes the uncertainty based 

on the definition of the degrees of membership, non-

membership and uncertainty of the intuitionistic fuzzy pairs. 

Meanwhile, the second approach employs the intuitionistic 

fuzzy estimations of the embedded devices. It is worth noting 

that these approaches are proposed to be applied to all types 

of service systems. In [1], the composition of the IoT services 

based on the QoS is addressed. The authors proposed a new 

hybrid algorithm based on the Artificial Bee Colony (ABC) 

for its f few control parameters and easy implementation and 

Bat Algorithm (BA) to avoid ABC’s slow convergence 

limitation.  

[5] proposed an approach that reduces the search space, using 

the clusters of web services into nonoverlapping groups based 

on their input(s) and output(s). Then, two heuristics are 

proposed, the first one employs a beam search strategy  to 

solve the multiple QoS aware problem using scalarization and 

find Pareto optimal solutions. The second approach is based 

on the nondeterministic sorting genetic algorithm (NSGA) to 

solve multiple QoS aware optimization problems. In [32], the 

authors proposed a two-stage approach, where the first stage 

reduces the search space by selecting the Top-K Web services 

according to the Majority Judgment (MJ) heuristic. The 

second stage leverages the Constraint Programming (CP) 

heuristic to eliminate the compositions that violate the global 

constraints. The selected Top K compositions must optimize 

the Global QoS Conformance objective function [15].  

3. PROBLEM STATEMENT 

In the following sections, we introduce the concepts and 

notations leveraged to manage the web service compositions 

with dealing the fluctuation of QoS. 

3.1 Notation 

To deal with the service composition problem, we consider 

that the user’s request represents a workflow of n tasks, each 

task CLj contains a set of services Si. These services are 

designated by r criteria, representing QoS. These criteria can 

be positive (e.g., reputation) and negative (e.g., cost). Given 

the uncertain nature of the environment, each attribute 

criterion is represented by a set of instances. The notations and 

concepts are detailed in Table 1.  

Furthermore, in this paper, we consider multiple workflows 

and both positive and negative QoS attributes, including 

response time, reliability, availability. The positive attributes 

must be maximized (such as reliability and availability), while 

negative attributes must be minimized (such as response 

time). The aggregation functions are mechanism used to 

compute the overall QoS of the composition based on a set of 

functions. We leverage the aggregation functions proposed in 

[15] (see Table 2).  

Table 1: Notations [32] 

Notations Meaning 

n The number of tasks (abstract 

classes). 

m The number of services per task. 

r The number of QoS attributes. 

l The number of service instances (i.e., 

the number of QoS realizations or the 

sample size). 

CL1, CL2, ..,CLn The set of abstract classes, each class 

contains atomic Web services with the 

same functionality and different QoS 

Sj1, Sj,.., Sjm Represents the service i related to CLj  
QoSpiju The value of the pth QoS attribute 

related to the uth instance of the 

service Si ∈  CLj 
b1, b2, ..,br The user’s global constraints (i.e., the 

bounds that must be fulfilled by the 

QoS of the composition). 

w1, w2, ..,wr The weight of the QoS criteria, the 

default value of each wp is 1/r. 
K The size of the returned list (of 

compositions). 

 

Table 2: QoS aggregation functions [15] 

Function Attribute 

Response time Reliability Fidelity 

Sequential  ∑ q(Sji)n
j=1   

∏q(Sji)

n

j=1

 1
n⁄ ∑q(Sji)

n

j=1

 

Loop 
∑q(Sji)

n

j=1

 ∏q(Sji)

n

j=1

 
q(Sji) 

Parallel max
𝑛

𝑗 = 1q(Sji) ∏q(Sji)

n

j=1

 1
n⁄ ∑q(Sji)

n

j=1

 

Conditional max
𝑛

𝑗 = 1q(Sji) min
𝑛

𝑗 = 1q(Sji) min
𝑛

𝑗 = 1q(Sji) 

 

3.2 Utility functions 

 

In this work, we integrate the user’s request, termed global 

constraints. Therefore, we utilize the utility function known 

Global QoS Conformance (GQC) to select the near-optimal 

composition. In fact, GQC is the probability that the 
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composite service fulfills these global constraints.  Since our 

focus is on satisfying of r global constraints simultaneously, 

we calculate the product of the r probabilities associated with 

each constraint. Each individual probability (see Equation 2) 

Pr((Sw1,..,Swn),bp), denotes the chance that the composition  

C =(Sw1,..,Swn)   has an aggregated Quality of Service (QoSp) 

greater than or equal to the user’s bound bp in the case where 

(QoSp) is a positive criterion). In case where two compositions 

ties, we rank them according the utility function (U) (see 

Equation 6), where a higher score indicates a superior ranking. 

 

 

𝐺𝑄𝐶 ((𝑆𝑤1, . . , 𝑆𝑤𝑛), (𝑏1, . . , 𝑏𝑟)) = ∏ ((𝑆𝑤1, . . , 𝑆𝑤𝑛), 𝑏𝑞)
𝑟
𝑞=1 )                   

                                                             (1) 

Pr ((𝑆𝑤1, . . , 𝑆𝑤𝑛), 𝑏𝑞))

=
1

𝑙𝑛

∗  ∑ …

𝑙

𝑢1=1

∑ 𝑆𝑡𝑒𝑝 (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑆𝑤1𝑢1𝑞 , . . , 𝑆𝑤𝑛𝑢𝑛𝑞))     (2)

𝑙

𝑢𝑛=1

 

 

 Step(Aggregate (QoSpsw1u1 , … , QoSpswnun) , bp) =

{
 
 

 
 1 if Aggregate (QoSpsw1u1 , … , QoSpwnun) ≥ bp

 and the criterion 𝑝 is positive 

1 if Aggregate (QoSpsw1u1 , … , QoSpwnun) ≤ bp

 and the criterion 𝑝 is negative 

0 otherwise. 

    

(3) 

 

𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶) = ∑𝑤𝑝 ∗  
𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝

′ (𝐶) − 𝑄𝑚𝑖𝑛′(𝑝)

𝑄𝑚𝑎𝑥′(𝑝) − 𝑄𝑚𝑖𝑛′(𝑝)
     (4) 

𝑟

𝑝=1

 

 

𝑈𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐶) = ∑𝑤𝑝 ∗  
𝑄𝑚𝑎𝑥′(𝑝) − 𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝

′ (𝐶)

𝑄𝑚𝑎𝑥′(𝑝) − 𝑄𝑚𝑖𝑛′(𝑝)
   (5) 

𝑟

𝑝=1

 

 

𝑈 (𝐶) = 𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶) + 𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶)    (6) 

Where: 

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ (𝐶) =∑𝑀𝑒𝑑𝑖𝑎𝑛𝑢∈{1..𝑙}𝑄𝑜𝑆𝑝𝑆𝑗𝑖𝑗𝑢      (7)

𝑛

𝑗=1

 

If we deal with a positive criterion p: 

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ ≥ 𝑏𝑝          (8) 

If we deal with a negative criterion p: 

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ ≥ 𝑏𝑝          (9) 

4. COMPOSITION FRAMEWORK 

Figure 1, presents our proposed framework that supports the 

user to find the best service composition. This framework is 

based on three modules: 

1. Class management module: This module categorizes 

each service into corresponding abstract classes, ensuring 

regular updates for the addition of new services and the 

removal of unavailable components.  

2. QoS management module: The QoS is a 

nondeterministic value which mean for each attribute we 

have a set of realized. These values are collected from the 

service providers and social network, then stored in a data 

warehouse. 

3. Optimization Module for Service Composition: This 

module is used for the service composition optimization. 

It is based on the user requirements (Global constraints) 

The QoS data can be drawn from the service provider 

itself (e.g., cost), the social networks (e.g., ratings, 

reputations), and the third parties (e.g., throughput, 

latency). and the proposed workflow.  The optimization 

process involves two sub-modules: the first sub-module 

is used to select the most relevant web service, also called 

local optimization based on algorithm 1; the second sub-

module handles the global optimization or the selection 

for the near-optimal composition. 

 
Figure 1: Proposed framework. 

 

4.1 Hesitant Fuzzy Set (HFS) for a local optimization 

Addressing real-world problems has consistently been an 

interesting area of research. Therefore, many theories, 

applications, and methods related to fuzzy sets have been 

proposed and applied to address these problems. Among these 

research efforts, [26] introduced an extension of the fuzzy sets, 

called Hesitant fuzzy set (HFS), designed to overcome the 

drawback of the traditional Fuzzy set extensions when dealing 

with the uncertain information. Indeed, Hesitant Fuzzy Set 

(HFS) denotes a set of possible values in the range [0,1] rather 

than of singular membership degree. Inspired by [30], we 

leverage a heuristic based on the hesitant fuzzy set to represent 

QoS realizations of Web services. In this heuristic, the 

closeness degree is computed to rank the services within the 
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same task. Furthermore, we integrate the deviation degree to 

address cases where the closeness degrees are equal. 

  In the following, we present the main concepts used in this 

heuristic. 

Definition 1: Let X be a fixed set, a HFS on 𝑋 defined in terms 

of a function that is when applied to X returns a subset of [0,1]. 

The HFS is represented mathematically by [Xia and Xu, 2011] 

as: 

𝐴 = {< 𝑥, ℎ𝐴(𝑥)|𝑥 ∈ 𝑋}     (10) 

 

The range of the set ℎ𝐴(𝑥)  is [0,1], denoting the possible 

membership degrees of the element x ∈ X with respect to the 

set. 

Definition 2: (Chen et al. 2013a). For a HFE h , we define the 

deviation degree 
𝜎
→of h as follows: 

𝜎
→ = [

1

𝑙ℎ
 ∑(𝑦 − 𝑠(ℎ))2

𝑦∈ℎ

]

1
2

         (11) 

Where s(h) is the score of h: 

𝑠(ℎ) =  1 𝑙⁄ ∗  ∑ 𝑦𝑦∈ℎ                (12) 

 

4.1 QoS Normalization 

Handling multiple QoS  attributes within the selection 

process presents a challenge, as each attribute has diverse 

measurement units and magnitudes [16]. Consequently, it is 

crucial to normalize the QoS values to a uniform range during 

the process. We employ the normalization function outlined 

in Equation 4.18 to map the QoS values into a standardized 

range from 0 to 1. 

𝑁𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢
=
QoSps𝑖𝑗𝑢  −  𝑄𝑚𝑖𝑛(𝑝)

𝑄𝑚𝑎𝑥(𝑝) −  𝑄𝑚𝑖𝑛(𝑝)
   (13) 

𝑄𝑚𝑖𝑛(𝑗, 𝑝) =  𝑀𝐼𝑁𝑠𝑖∈𝐶𝐿𝑗  ,𝑢∈1,..,𝑙  (𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢)   (14) 

    
𝑄𝑚𝑖𝑛(𝑗, 𝑝) =  𝑀𝐼𝑁𝑠𝑖∈𝐶𝐿𝑗  ,𝑢∈1,..,𝑙  (𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢)      (15) 

 
4.2 Entropy and Cross-Entropy for Hesitant fuzzy set 

Actually, the Entropy is leveraged to compute the weights of 

criteria. However, Cross-Entropy is applied to compute the 

divergence between two probability distributions. Hence, we 

leverage the Cross-Entropy for computing divergence 

between QoS realizations and best and/or worst solutions. 

According to [Xu and Xia, 2012], Cross-Entropy for hesitant 

fuzzy set is defined as follow: Let ℎ𝑆𝑗1(𝑝) and ℎ𝑆𝑗2(𝑝) be two 

HFEs of the services 𝑆𝑗1 and 𝑆𝑗2 respectively, then the Cross 

Entropy C( ℎ𝑆𝑗1(𝑝), ℎ𝑆𝑗2(𝑝)) is specified as: 

 

1

𝑙𝑇0
∑ 

𝑙

𝑢=1

 

(
(1 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢)𝑙𝑛 (1 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢) + (1 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢)𝑙𝑛 (1 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢)

2
−

2 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢
2

𝑙𝑛 (
2 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢

2
) +

(1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1))) 𝑙𝑛 (1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1)))

2
+

𝐶 (ℎ𝑠𝑗1(𝑝), ℎ𝑠𝑗2(𝑝))  =
(1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1))) 𝑙𝑛 (1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1)))

2
−

(
2 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1) + 1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1))

2

ln (
2 + t(1 − QoSps1j(l−u+1) + 1 − QoSps2j(l−u+1))

2
)))

               (16) 

Where: 

T0 = (1 + t)ln (1 + t) − (2 + t)(ln (2 + t) − ln (2)), t ≥ 0. 

                                (17) 

 

 

According to [Xu and Xia, 2012] the entropy (or disorder 

quantity) of a fuzzy hesitant set is defined as follows: Let h 

be a HFE, then entropy is specified as:  

 

Esjiq(h) = 1 −
2

lT0
∑ 

l

u=1

 

(
(1 + tQoSps1ju)ln (1 + tQoSps1ju) + (1 + t(1 − QoSps1j(l−u+1))) ln (1 + t(1 − QoSps1j(l−u+1)))

2

−
2 + tQoSps1ju + t(1 − QoSps1j(l−u+1))

2
ln 
2 + tQoSps1ju + t(1 − QoSps1j(l−u+1))

2
)

 

             (18) 

 

4.1 Model of Entropy weights 

In general, resolving the service selection problem 

necessitates an understanding of Quality of Service (QoS) and 

its significance in terms of QoS weights. Various approaches 

require users to specify their QoS preferences. Nevertheless, 

these methods are impractical as users often lack the necessary 

knowledge to assign weights to each QoS attribute. Therefore, 

we adopt Entropy theory [27] to determine the QoS weights. 

The higher the weight, the more important the QoS criterion 

is. 

 

wp
′ =

1 − Ep

m− ∑  r
p=1  Ep

          (19) 

 

Ep =
1
𝑚⁄ ∑  m

i=1  Ehip , p = 1,2, … , r.   (20) 

 

Ehip = 1 − C(hip, hip
c )         (21) 

 

 

5. PROPOSED APPROACH 

Our proposed approach is based on two algorithms. First, the 

’ServiceLocalOptimization’ algorithm (SLO) enables us to 

rank the Web services. This algorithm is inspired from 

EntropyServiceRanking (ESR) proposed in [30]. In SLO we 

utilize the deviation degree during the ranking process to 

tackle the situations where services are equal. Then, we 

employ the algorithm called the Group Learning-based 
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Composition (GLC), depicted in algorithm 2, to select the 

TopK compositions. 

 

5.1 Local optimization 

The algorithm 1 (SLO) is presented below. 

 

Algorithm  1 ServiceLocalOptimization 

 

Input: < CL1, ..., CLn >, 

ℎ𝑝
+= 1  // positive ideal solution, 

ℎ𝑝
− = 0  // negative ideal solution 

 Output: RankedCL1, ..., RankedCL𝑛 

Begin 

1: for p=l to r do 

2: 𝑤𝑝= compute-weight() // The weight is computed 

according to Equation (14) 

3: end for 

4: for j=l to n do 

5: for i= l to m do 

6: 𝑐+(𝑆𝑗𝑖) = ∑ (𝑤𝑝 ∗ 𝐶(ℎ𝑆𝑗𝑖(𝑝), ℎ𝑝
+ )𝑟

𝑝=1  

7: 𝑐−(𝑆𝑗𝑖) = ∑ (𝑤𝑝 ∗ 𝐶(ℎ𝑆𝑗𝑖(𝑝), ℎ𝑝
− )𝑟

𝑝=1  

 

8 𝐶(𝑆𝑗𝑖)= 
𝑐+(𝑆𝑗𝑖)

𝑐−(𝑆𝑗𝑖)+ 𝑐
−(𝑆𝑗𝑖)

 

 

9: end for 

10: RankedCL𝑗=ascending-sort (CL𝑗 ,C ( 𝑆𝑗𝑖),
𝜎
→) 

11: end for 

12:  return <RankedCL1, ..., RankedCL𝑛> 

13: end 

 

 We start by leveraging Equation 19 to compute the 

weight 𝑤𝑝of each attribute p (line 1,3). 

  We employ the Equation 16 compute the Cross-

Entropy between the service 𝑆𝑗𝑖and ℎ𝑝
+ that 

represent the positive ideal solution (resp. the 

negative-ideal solution ℎ𝑝
− ) (line 4 to 5).  

 We compute the closeness degree between the 

service 𝑆𝑗𝑖 and the ideal solution (line 8). 

 We rank the services of each task based on c(𝑆𝑗𝑖) in 

ascending order. The smaller the value of c(𝑆𝑗𝑖), the 

better the rank. If two services ties in terms of c(𝑆𝑗𝑖) 

we rank them according the deviation degree see 

Equation 11  (line 10). 

  We return the ranked classes in line 12. 

5.2 Group Learning based Composition 

After completing the first process and retrieving the best 

services and minimizing the search space, the second sub-

module is executed to perform the composition process by 

forming the compositions according to workflow and 

selecting the best one based on the user requests. Therefore, 

we propose algorithm 2 called Group Learning-based 

Composition (GLC). This algorithm is based on the Group 

Learning Algorithm (GLA) proposed by [20]. 

GLA is a recent metaheuristic implemented based on the 

interactions of individuals within a group and the influence 

of group leader on group members. This algorithm mimics 

the impact of group leaders and managers on the ability of 

group members. This algorithm divides the population into a 

number of equal groups and selects certain individuals as the 

group leaders based on their fitness. Additionally, it 

identifies the manager, who is the individual with the best 

fitness in the whole population. 

This population-based metaheuristic effectively addresses 

the limitations of multiple metaheuristics. It is characterized 

by its flexibility and simplicity of implementation, requiring 

only a few control parameters. This algorithm proposes a 

great exploration and exploitation and achieves a fine 

balance between the two, as these parameters are adjusted by 

the number of groups.  

In [20], the researchers modeled the influence of the group 

manager on the group leader by the Equation 22. 

𝐿𝐴 =  (𝑥 − 𝑦) ∗ 𝑟.       (22) 

LA represents the updated group leader after being 

influenced by the manager. The variable x denotes the group 

leader, which is the individual with the highest fitness within 

the group, while y refers to the manager, which is the 

individual with the highest fitness across the entire 
population. Additionally, r represents a random number 

generated within the range [0, 1]. 

Furthermore, the influence of the group leader on the 

population is represented mathematically by Equation 23. 

 
𝑁𝑒𝑤_𝑝𝑜𝑝(𝑖)  =  (𝐿𝐴 − 𝑝𝑜𝑝(𝑖))  ∗ 𝑟 

 

Where 𝑛𝑒𝑤_𝑃𝑜𝑝 (𝑖) represents the updated individual after 

it is affected by the LA found in Equation 22, Moreover, the 

external impact is represented in this algorithm by the 

mutation operation (see Figure 2). 

In our proposed algorithm, we have enhanced Equations of 

GLA to deal discrete optimization problems in the following 

manner: 

 

𝑋𝐿𝑔=  Find_Service(⌊(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝐿𝑔) − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛( 𝑋𝑀)) ∗

𝑟⌋) (24) 

 

In this context, 𝑋𝐿𝑔 represents the updated service leader in 

the group g, influenced by the manager 𝑋𝑀. The variable r is 

a random number generated within the range [0, 1]. The 

function Position () is employed to identify the location of 

service X, while the Find_Service() function is utilized to 

retrieve the service based on its position (see Equation 24).  



 

12 

 

 

 

New_X𝑔𝑖  = Find_Service(⌊(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝐿𝑔) −

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝑖)) ∗ 𝑟⌋)      (25) 

 

On the other hand, New_X𝑔𝑖  is the new service individual i 

of the group g after it is affected by the new service leader 

𝑋𝐿𝑔. 

 

New_indiv_X𝑔𝑖= = Find_Service(⌊𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(New_X𝑔𝑖) −

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝑀)) ∗ 𝑟⌋)     (26) 

 

Where New_indiv_X𝑔𝑖   is the new service individual I within 

the group g after it is affected by the service manager 𝑋𝑀. 

 

 

Figure 2: GLA [20] 

 

Algorithm  2 GLC 

Input: RankedCL1, ..., RankedCLn , k , MaxIter , 

PopSize, mutation_rate, group_number. 

Output: BestComposition 

Begin 

1:     for i=1 to PopSize do 

2:           𝑋𝑖= init(< RankedCl1, ...,    RankedCln >, k) // 

Initialize_population  

 3:          𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖  = ComputeGQC(𝑋𝑖); 

 4:       end for 

 5:         𝑋𝑀 = find_manager(𝑋𝑖, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖) 

 6:         𝑋𝐺𝑔 = Divide_population (𝑋𝑖 , group_number) 

 7:        for g=1 to group_number do 

 8: 𝑋𝐿𝑔= finde_leader(𝑋𝐺𝑔 g,   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑔) 

 9:         end for 

10:       while (t ≤ MaxIter) do 

11:            for g=1 to group_number do  

12:                   𝑋𝐿𝑔 = Update1 (𝑋𝐿𝑔 , 𝑋𝑀) 

13:           for i=1 to PopSize do 

14:                        New_X𝑔𝑖  =  Update2 (𝑋𝐿𝑔 , 𝑋𝑔𝑖) 

    15:                        New_indiv_X𝑔𝑖  = Update3      

                                           (𝑋𝑀 , New_X𝑔𝑖) 

    16:        Mutation (          

New_indiv_X𝑔𝑖  , mutation_rate) 

    17:                         end for 

    18:              end for 

19:    𝑋𝑀 = find_manager(New_indiv_X𝑖 , 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖) 

20:        end while   

21: return    𝑋𝑀 

22: end 

  

The GLC Algorithm is explained as follows: 

Lines 1-4: We initialize all the population based on top-k 

elements (i.e., k in algorithm 1) of the ranked classes, where 

the population represents the possible compositions. Then, 

we compute the GQC for each composition.  

Line 5: We designate the manager of the population.  

Line 6: We divide the population into a number of    
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                   groups. 

Lines 7-9:  We define a group leader for each group. 

Lines  10-19: This constitutes the loop of a maximum 

iteration count, MaxIt. 

Lines  11-18: This loop iterates over different groups. 

Line 12: The function Update1 update the leader, designated 

as  𝑋𝐿𝑔 , of each group by employing Equation 24. 

Lines  13-17: This loop iterates over the individuals within 

the population. 

Line 14: The function Update2 updates the individuals based 

on  Equation 25 . 

Line 15: The function Update3 adjusts the individuals based 

on Equation 26. 

Line 16: Random change in the position of some individuals 

using mutation. 

Line 19: We designate the manager of the population. 

Line 21: return the best composition. 

6. EXPERIMENTAL STUDY 

To assess the performance of the proposed service 

composition optimization approach, in terms of Global 

Quality of Service (QoS) Conformance and computation time 

(measured in milliseconds) We conduct a series of 

experiments using two different types of datasets. 

The first dataset utilized is a real-world dataset based on the 

example provided in [15], derived from a real-world QWS 

dataset collected by Al-Masri and Mahmoud (2007) [2]. We 

generate 10 QoS realizations (l) of the response time and 

reliability according to a Gaussian distribution. The range of 

each task is presented in Table 5, where 𝜇 is the mean and 𝜎 

is the standard deviation.  The fidelity is uniformly generated 

between 1 and 4. Additionally, we set the global constraints of 

response time, reliability, and fidelity as 2400 ms, 0.025, and 

3.  

It is worth mentioning that all algorithms were implemented 

using the Java programming language. Experiments were 

performed on a Windows 7 with an Intel I3 core 2.53GHz 

processor, 4 GB RAM. 

 

Table 3: Configuration of Gaussian distributions [15]. 

Task Response Time Reliability 

Electronic 

Product Finder 
𝜇∈[78,117] 

𝜎∈[0,30] 

𝜇∈[0.63,0.95] 

𝜎=√𝜇(1 − 𝜇) 

SendSMS 𝜇∈[1046,1569] 

𝜎∈[ [0,435] 

𝜇∈[[0.45,0.80] 

𝜎=√𝜇(1 − 𝜇) 

SmartPayment 𝜇∈[117,175] 

𝜎∈[ 0,45] 

𝜇∈[0.60,0.90] 

𝜎=√𝜇(1 − 𝜇) 

CreditCard 

Validator 
𝜇∈[254,48] 

𝜎∈[ 0,105] 

𝜇∈[0.48,0.71] 

𝜎=√𝜇(1 − 𝜇) 

UPSTracking 𝜇∈[74,111] 

𝜎∈[0,30] 

𝜇∈[0.62,0.94] 

𝜎=√𝜇(1 − 𝜇) 

 

In these experiments, we varied the number of candidate web 

services m from 100 to 500. In addition, the number of Top 

services (k) to 10. We leveraged 3 QoS attributes (i.e., 

response time, availability, and fidelity), and we generate 10 

realizations (number of instances) per QoS attribute. 

Furthermore, we varied the number of populations from 100 

to 500 and the number of iterations from 100 to 500. 

 

Table 4: GQC vs. population size and number of services 

(m). 

 Iterations =100 

 Popsize 

=100 

Popsize 

=300 

Popsize 

=500 

n=5, 

m=100, 

r=3, 

l=10, 

k=10 

GLC 0.93 0.92 0.92 

GWC 0.91 0.91 0.92 

IM_ABC 0.50 0.54 0.54 

n=5, 

m=200, 

r=3, 

l=10, 

k=10 

GLC 0.92 0.94 0.94 

GWC 0.94 0.94 0.94  

 

IM_ABC 0.45 

 

0.44 

 

0.50 

n=5, 

m=300, 

r=3, 

l=10, 

k=10 

GLC 0.92 0.94 0.93 

GWC 0.93 0.95 0.95 

IM_ABC 0.36  0.45  0.50  

 

Table 5: GQC vs. number of iterations and number of 

services (m). 

 Popsize =300 

 MaxIter 

=100 

MaxIter 

=300 

MaxIter 

=500 

n=5, 

m=100, 

r=3, 

l=10, 

k=10 

GLC 0.91 0.91 0.90 

GWC 0.91 0.91 0.91 

IM_ABC 0.42   0.54  0.54 

n=5, 

m=200, 

r=3, 

l=10, 

k=10 

GLC 0.94 0.93 0.94 

GWC 0.94 0.94 0.93 

IM_ABC 0.56 0.60 0.54 

n=5, 

m=300, 

r=3, 

l=10, 

k=10 

GLC 0.91 0.94 0.94 

GWC 0.92 0.93 0.95 

IM_ABC 0.45 0.58 0.56 

 

In Table 3 and 4, we conduct a comparative analysis between 

our proposed approach and the GWC approach [30] and 

IM_ABC approach [23] according to GQC.  GLC is more 

powerful than IM_ABC approach in terms of GQC in all 

experiments presented in Tables 3 and 4. However, GQC 

performance of GLC is almost equal to the GWC approach. 

Table 6: GQC vs. number of groups (G). 

 

 G=4 G=10 G=20 

n=5,m=100,r=3,l=10, 

Popsize=100 

0.91 0.90 

 

0.88 

 

n=5,m=100,r=3,l=10, 

Popsize=300 

0.91  0.90 

 

0.91 
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To explore deeper into the analysis of GWC, we investigate 

the influence of the number of groups, which plays a crucial 

role in balancing exploration and exploitation. Thus, we 

conduct experiments with different group sizes, setting G to 4, 

10, and 20, while tracking the GQC metric. Our observations 

reveal that as the number of groups increases, particularly 

when the population size is small, the solution tends to deviate 

from the near-optimal solution. For instance, after 100 

iterations with a population size of 100 and G set to 4, the 

GQC of the near-optimal solution is recorded as 0.91. 

However, with G set to 20, the GQC value shows a 

divergence, decreasing to 0.88. 

 

 
Figure 3: The effect of iterations on the CPU time. 

 

Figure 3 displays the mean execution durations 

corresponding to the experiments detailed in Table 4. In this 

study, we assume the pre-computation of GQC. The results 

reveal that our proposed method exhibits a speed advantage 

over IM_ABC by approximately 0.7 seconds. Additionally, 

our approach demonstrates a marginal improvement in speed 

compared to GWC, with a difference of approximately 0.2 

seconds. This outcome is primarily attributed to the 

computation of three near-optimal solutions within the 

GWC. 

7. CONCLUSION 

This paper introduces an optimization technique for web 

service composition under uncertain environment. Our 

approach consists of two main steps: firstly, employing local 

optimization for lowing the number of similar services by 

sorting and selection the most pertinent ones. Secondly, 

leveraging a global optimization to determine the near-

optimal service composition that satisfies the user constraints. 

In future research, we intend to explore the correlations 

between both QoS user requirements and QoS of the web 

services. Additionally, we aim to consider the QoS of Cloud 

services (SAAS), such as Disc storage performance, I/O 

Memory performance, and data center regions into our 

approach for cloud composition.  
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