

 June 2024 Volume 3 Number 3 Pages 06-15

………………………………… …………………………………………………………………………………........................

6

ABSTRACT

Over the past few years, companies have been offring a variety

of functionalities through Web services as part to stay

competitive. Meanwhile, the customers may face challenges

in choosing a service that meets their requirements due to the

similarity of functionalities. Moreover, the customers’

requests often emerge with a complex nature in an uncertain

environment that is rarely fulfilled by an atomic service.

Hence, there is a necessity for optimizing service composition

based on Quality of Service (QoS) with taking into account

environmental uncertainty. To attain the mentioned goal, our

proposed approach adopts a local and global optimization

strategies. Firstly, we adopt a heuristic based on the Entropy,

Cross-Entropy, and the deviation degree for the hesitant fuzzy

set to rank similar Web services. Afterwards, we introduce an

improved metaheuristic called Group Leaning based

Composition as a global optimization for selecting the near-

optimal composition.

Key words : Deviation degree, Global Optimization, Group

learning metaheuristic, Hesitant fuzzy set, Local

Optimization, Service Composition, Quality of Service, Web

Service.

1. INTRODUCTION

Web services becomes a pillar in providing several solutions

in different vital areas, such as Electronic Health, e-

government, scientific workflows, and Internet of Things

environments (e.g., smart cities). This proliferation is

attributed to the collaboration between the modular services

that occur without requiring knowledge of the internal

implementation details. The collaboration results in a

combination commonly referred as the service composition.

In fact, the service composition based on QoS is considered as

a Single-Objective or a Multi-Objective Optimization [11].

This optimization is recognized as NP hard problem,

Attracting the attention of many recent researches

[6],[12],[17],[18],[19],[25]. The primary challenge is the

large number of concurrent services that offer similar

functionalities. On the other hand, the composition must

respect the user requirement, called the global constraints.

Consequently, the composition process depends on the

nonfunctional features known as Quality of Service. For

instance, a user can request for an online product purchase

with specific requirement for cost, response time, and fidelity.

This request can be a combination of multiple services such as

the research of products, the currency exchange service, and

the payment services. Each one can be proposed by multiple

concurrent providers with different QoS. In this case, the QoS

is a fundamental key to select the most relevant services,

forming a composition set, and determining the pertinent

composition that will satisfy the user’s constraints. In the

current state of the art, although various approaches and

frameworks have been employed to tackle these challenges,

we observe that the most of them treat QoS as static values

that impact the both service selection and the resulting

composition. Meanwhile, this process occurs in a fluctuating

environment, influenced by factors such as involving network

conditions, work-loads, etc… These factors impact on QoS

throughout the process, emphasizing the inherent uncertainty

and variability of QoS. For instance, the response time of

Received Date: April 09, 2024 Accepted Date: May 07, 2024 Published Date: June 01, 2024

Available Online at https://www.ijsrisjournal.com/index.php/ojsfiles/article/view/150

https://doi.org/10.5281/zenodo.11217801

Efficient Service Composition Optimization under Uncertain Environment

REMACI Zeyneb Yasmina1
1Department of Computer Science, University of Abou Bekr Belkaid Tlemcen, Algeria.

zeynebyasmina.remaci@univ-tlemcen.dz

https://www.ijsrisjournal.com/index.php/ojsfiles/article/view/150
https://doi.org/10.5281/zenodo.11217801

7

delivery service changes based on some factors like server

load or network traffic.

Therefore, in this paper we aim to address three aspects. First,

inspired by [30], we manage the nondeterministic QoS during

the composition process by leveraging the hesitant fuzzy set.

Then, we enhance the heuristic proposed by [30] by

incorporating Cross-entropy for hesitant fuzzy set to minimize

the search space by adding the deviation degree. Finally, we

introduce the Group Leaning-based Composition (GLC) to

select the service composition that respect the user’s

requirements. Furthermore, we utilize Global Quality

Conformance (GQC) [15] (see Equation 1) as utility function

to handle the nondeterministic QoS.

1.1 Contribution

Our contribution can be summarized in threefold:

1. We compute the weight of each attribute based on the

Entropy. Furthermore, we rank the services, then we

retrieve the TOP-K services according to Cross-Entropy.

In this step, the QoS attributes are considered as hesitant

fuzzy elements [26],[28].

2. We propose Group Learning-based Composition GLC) to

select the near-optimal composition using the

metaheuristic called GLA.

3. We perform a set of experiments that show the

effectiveness and efficiency of the proposed approach.

The remainder of this paper is organized as follow: Section

2 provides an overview of related works. In Section 3,

introduces notations and concepts, while Section 4 outlines

the proposed framework. The conclusion is presented in

Section 5.

2. STATE OF THE ART

The QoS-based service selection and/ or composition

approaches has been addressed by multiple researches.

Meanwhile, the uncertain environment is often overlooked

and the QoS attributes are considered as static values.

2.1 Web service composition based on certain QoS

In [4], the authors handled web service composition in a multi-

cloud environment through a two-step process. Firstly, they

employed a cloud combiner to select an optimal combination

from the available multi-cloud providers. Then, they

leveraged an Intelligent Water Drops (IWD) algorithm, which

considers quality of service (QoS) parameters, for the service

composition.

The authors in [8] proposed an improved genetic algorithm

(IGA)for web service composition optimization based on QoS

and user needs. In this approach, the lexicographic

optimization method (LOP) and the threshold constraint

relaxation technique (TCR) are employed to eliminate the

concurrent web service with lower QoS. Furthermore, the web

service composition problem is transformed into a single-

objective optimization problem, and an elitist genetic

algorithm is adopted search global optimal solution satisfying

the demand of user.

The work by [29] optimized the Web service composition by

introducing an enhanced Firefly algorithm. This approach

integrates the principle of selection, exchange, and mutation

in the genetic algorithm into the traditional firefly algorithm,

resulting in a population solution that approaches the optimal

solution. The approach proposed in [22], handle the Service

composition mechanism in the Internet of Things based on

QoS. This approach is based on a hidden Markov model

(HMM) and an ant colony optimization (ACO). Furthermore,

the emission and transition matrices have been improved

using the Viterbi algorithm. The work by [3] proposed a

service composition approach for the multi-cloud

environment. The approach is based on the ant colony

optimization algorithm (ACO) leveraging the multi-

pheromone mechanism to optimize the quality of service

(QoS). Further, the mutation operation of the genetic

algorithm is utilized to prevent the slow convergence speed

and the occurrence of local optima.

A new hybrid algorithm was proposed in [13], based on the

Artificial Bee Colony (ABC) and Cuckoo Search (CS). The

Cuckoo Search is used to overcome the ABC’s limitations

such as the slow convergence problem. The work in [14] deals

with Web Service Composition (WSC) problem by leveraging

an improved version of the Bat Algorithm (BA) by addressing

certain limitations, such as the trade-off among exploration

and exploitation searching mechanisms. Firstly, a population

initialization method is proposed to avoid the bad initialization

that leads to premature convergence. Furthermore, an elitist

method is leveraged to achieve a better convergence rate.

Finally, the neighborhood method is utilized to achieve a

better tradeoff between search mechanisms.

The work by [30] introduces a Multi-Criteria Decision

Making (MCDM) approach that integrates Best Worst

Method (BWM) to determine the weights of criteria and

relative scores for alternatives. Furthermore, the authors

leverage Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) to rank cloud services.

In [14], the authors proposed a hybrid approach that merges

the Artificial Neural Network (ANN) with the meta-heuristic

PSO algorithm for a service composition model in Cloud-edge

computing. Furthermore, they introduced a formal verification

method based on a labelled transition system to assess Linear

Temporal Logics (LTL) formulas, aiming to enhance the

proposed ANN-PSO and ensure its correctness. This approach

focuses on managing three Quality of Service (QoS)

attributes: response time, availability, and prices.

2.2 Web service composition based on uncertain QoS

The service composition in a multi-Cloud environment is

tackled in [13]. The approach revolves around a modified PSO

designed to compose the best services based on the uncertainty

of the QoS attributes.

In the [24], the authors improve the artificial bee colony

algorithm (ABC) by using a fuzzy distance and ranking

methods to enhance the artificial bee colony algorithm

diversity (FDMOABC). Subsequently, they presented a fuzzy

multi-criteria decision-making method (FMCDMM) to

identify the optimal composite service from the Pareto-

optimal solutions generated by FDMOABC. The work by [23]

leveraged an interval-based multi-objective artificial bee

8

colony algorithm (IM_ABC) to deal with the uncertain QoS-

aware service-composition problem QWSCP. Firstly, the

authors compared the services using interval-oriented

dominance relationship, where the intervals represent the

variation range of the QoS attributes. Then, they leveraged an

interval-valued utility function to assess the uncertain quality

of a composition. Finally, the authors employed an improved

version of NSGA-II to derive the non-dominated service

compositions. Multiple probabilistic heuristics and fuzzy

formulas was leveraged in [11] to address the service selection

in a fluctuating environment. Then, based on the Top-K

services, a constraint programming approach is employed to

select the Top-K optimal compositions of the services.

Likewise, the authors in [9] proposed four ranking heuristics

that perform a pairwise comparison of services and select the

most pertinent ones. Then, based on the swarm-intelligence-

based algorithm called discrete bat algorithm (DBA) they

performed the selection of the near-optimal composition.

In [27], the authors leverage a new approach called the

triangular fuzzy genetic algorithm (TGA), where the

triangular fuzzy set theory (FST) is combined with genetic

algorithm (GA) to solve the uncertain QWSCP. To deal with

the uncertain QoS, the authors in [18] proposed two

approaches based on the definition of intuitionistic fuzzy

logic. The first approach characterizes the uncertainty based

on the definition of the degrees of membership, non-

membership and uncertainty of the intuitionistic fuzzy pairs.

Meanwhile, the second approach employs the intuitionistic

fuzzy estimations of the embedded devices. It is worth noting

that these approaches are proposed to be applied to all types

of service systems. In [1], the composition of the IoT services

based on the QoS is addressed. The authors proposed a new

hybrid algorithm based on the Artificial Bee Colony (ABC)

for its f few control parameters and easy implementation and

Bat Algorithm (BA) to avoid ABC’s slow convergence

limitation.

[5] proposed an approach that reduces the search space, using

the clusters of web services into nonoverlapping groups based

on their input(s) and output(s). Then, two heuristics are

proposed, the first one employs a beam search strategy to

solve the multiple QoS aware problem using scalarization and

find Pareto optimal solutions. The second approach is based

on the nondeterministic sorting genetic algorithm (NSGA) to

solve multiple QoS aware optimization problems. In [32], the

authors proposed a two-stage approach, where the first stage

reduces the search space by selecting the Top-K Web services

according to the Majority Judgment (MJ) heuristic. The

second stage leverages the Constraint Programming (CP)

heuristic to eliminate the compositions that violate the global

constraints. The selected Top K compositions must optimize

the Global QoS Conformance objective function [15].

3. PROBLEM STATEMENT

In the following sections, we introduce the concepts and

notations leveraged to manage the web service compositions

with dealing the fluctuation of QoS.

3.1 Notation

To deal with the service composition problem, we consider

that the user’s request represents a workflow of n tasks, each

task CLj contains a set of services Si. These services are

designated by r criteria, representing QoS. These criteria can

be positive (e.g., reputation) and negative (e.g., cost). Given

the uncertain nature of the environment, each attribute

criterion is represented by a set of instances. The notations and

concepts are detailed in Table 1.

Furthermore, in this paper, we consider multiple workflows

and both positive and negative QoS attributes, including

response time, reliability, availability. The positive attributes

must be maximized (such as reliability and availability), while

negative attributes must be minimized (such as response

time). The aggregation functions are mechanism used to

compute the overall QoS of the composition based on a set of

functions. We leverage the aggregation functions proposed in

[15] (see Table 2).

Table 1: Notations [32]

Notations Meaning

n The number of tasks (abstract

classes).

m The number of services per task.

r The number of QoS attributes.

l The number of service instances (i.e.,

the number of QoS realizations or the

sample size).

CL1, CL2, ..,CLn The set of abstract classes, each class

contains atomic Web services with the

same functionality and different QoS

Sj1, Sj,.., Sjm Represents the service i related to CLj
QoSpiju The value of the pth QoS attribute

related to the uth instance of the

service Si ∈ CLj
b1, b2, ..,br The user’s global constraints (i.e., the

bounds that must be fulfilled by the

QoS of the composition).

w1, w2, ..,wr The weight of the QoS criteria, the

default value of each wp is 1/r.
K The size of the returned list (of

compositions).

Table 2: QoS aggregation functions [15]

Function Attribute

Response time Reliability Fidelity

Sequential ∑ q(Sji)n
j=1

∏q(Sji)

n

j=1

 1
n⁄ ∑q(Sji)

n

j=1

Loop
∑q(Sji)

n

j=1

 ∏q(Sji)

n

j=1

q(Sji)

Parallel max
𝑛

𝑗 = 1q(Sji) ∏q(Sji)

n

j=1

 1
n⁄ ∑q(Sji)

n

j=1

Conditional max
𝑛

𝑗 = 1q(Sji) min
𝑛

𝑗 = 1q(Sji) min
𝑛

𝑗 = 1q(Sji)

3.2 Utility functions

In this work, we integrate the user’s request, termed global

constraints. Therefore, we utilize the utility function known

Global QoS Conformance (GQC) to select the near-optimal

composition. In fact, GQC is the probability that the

9

composite service fulfills these global constraints. Since our

focus is on satisfying of r global constraints simultaneously,

we calculate the product of the r probabilities associated with

each constraint. Each individual probability (see Equation 2)

Pr((Sw1,..,Swn),bp), denotes the chance that the composition

C =(Sw1,..,Swn) has an aggregated Quality of Service (QoSp)

greater than or equal to the user’s bound bp in the case where

(QoSp) is a positive criterion). In case where two compositions

ties, we rank them according the utility function (U) (see

Equation 6), where a higher score indicates a superior ranking.

𝐺𝑄𝐶 ((𝑆𝑤1, . . , 𝑆𝑤𝑛), (𝑏1, . . , 𝑏𝑟)) = ∏ ((𝑆𝑤1, . . , 𝑆𝑤𝑛), 𝑏𝑞)
𝑟
𝑞=1)

 (1)

Pr ((𝑆𝑤1, . . , 𝑆𝑤𝑛), 𝑏𝑞))

=
1

𝑙𝑛

∗ ∑ …

𝑙

𝑢1=1

∑ 𝑆𝑡𝑒𝑝 (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑆𝑤1𝑢1𝑞 , . . , 𝑆𝑤𝑛𝑢𝑛𝑞)) (2)

𝑙

𝑢𝑛=1

 Step(Aggregate (QoSpsw1u1 , … , QoSpswnun) , bp) =

{

 1 if Aggregate (QoSpsw1u1 , … , QoSpwnun) ≥ bp

 and the criterion 𝑝 is positive

1 if Aggregate (QoSpsw1u1 , … , QoSpwnun) ≤ bp

 and the criterion 𝑝 is negative

0 otherwise.

(3)

𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶) = ∑𝑤𝑝 ∗
𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝

′ (𝐶) − 𝑄𝑚𝑖𝑛′(𝑝)

𝑄𝑚𝑎𝑥′(𝑝) − 𝑄𝑚𝑖𝑛′(𝑝)
 (4)

𝑟

𝑝=1

𝑈𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐶) = ∑𝑤𝑝 ∗
𝑄𝑚𝑎𝑥′(𝑝) − 𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝

′ (𝐶)

𝑄𝑚𝑎𝑥′(𝑝) − 𝑄𝑚𝑖𝑛′(𝑝)
 (5)

𝑟

𝑝=1

𝑈 (𝐶) = 𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶) + 𝑈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐶) (6)

Where:

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ (𝐶) =∑𝑀𝑒𝑑𝑖𝑎𝑛𝑢∈{1..𝑙}𝑄𝑜𝑆𝑝𝑆𝑗𝑖𝑗𝑢 (7)

𝑛

𝑗=1

If we deal with a positive criterion p:

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ ≥ 𝑏𝑝 (8)

If we deal with a negative criterion p:

𝑀𝑒𝑑𝑖𝑎𝑛𝑄𝑝
′ ≥ 𝑏𝑝 (9)

4. COMPOSITION FRAMEWORK

Figure 1, presents our proposed framework that supports the

user to find the best service composition. This framework is

based on three modules:

1. Class management module: This module categorizes

each service into corresponding abstract classes, ensuring

regular updates for the addition of new services and the

removal of unavailable components.

2. QoS management module: The QoS is a

nondeterministic value which mean for each attribute we

have a set of realized. These values are collected from the

service providers and social network, then stored in a data

warehouse.

3. Optimization Module for Service Composition: This

module is used for the service composition optimization.

It is based on the user requirements (Global constraints)

The QoS data can be drawn from the service provider

itself (e.g., cost), the social networks (e.g., ratings,

reputations), and the third parties (e.g., throughput,

latency). and the proposed workflow. The optimization

process involves two sub-modules: the first sub-module

is used to select the most relevant web service, also called

local optimization based on algorithm 1; the second sub-

module handles the global optimization or the selection

for the near-optimal composition.

Figure 1: Proposed framework.

4.1 Hesitant Fuzzy Set (HFS) for a local optimization

Addressing real-world problems has consistently been an

interesting area of research. Therefore, many theories,

applications, and methods related to fuzzy sets have been

proposed and applied to address these problems. Among these

research efforts, [26] introduced an extension of the fuzzy sets,

called Hesitant fuzzy set (HFS), designed to overcome the

drawback of the traditional Fuzzy set extensions when dealing

with the uncertain information. Indeed, Hesitant Fuzzy Set

(HFS) denotes a set of possible values in the range [0,1] rather

than of singular membership degree. Inspired by [30], we

leverage a heuristic based on the hesitant fuzzy set to represent

QoS realizations of Web services. In this heuristic, the

closeness degree is computed to rank the services within the

10

same task. Furthermore, we integrate the deviation degree to

address cases where the closeness degrees are equal.

 In the following, we present the main concepts used in this

heuristic.

Definition 1: Let X be a fixed set, a HFS on 𝑋 defined in terms

of a function that is when applied to X returns a subset of [0,1].

The HFS is represented mathematically by [Xia and Xu, 2011]

as:

𝐴 = {< 𝑥, ℎ𝐴(𝑥)|𝑥 ∈ 𝑋} (10)

The range of the set ℎ𝐴(𝑥) is [0,1], denoting the possible

membership degrees of the element x ∈ X with respect to the

set.

Definition 2: (Chen et al. 2013a). For a HFE h , we define the

deviation degree
𝜎
→of h as follows:

𝜎
→ = [

1

𝑙ℎ
 ∑(𝑦 − 𝑠(ℎ))2

𝑦∈ℎ

]

1
2

 (11)

Where s(h) is the score of h:

𝑠(ℎ) = 1 𝑙⁄ ∗ ∑ 𝑦𝑦∈ℎ (12)

4.1 QoS Normalization

Handling multiple QoS attributes within the selection

process presents a challenge, as each attribute has diverse

measurement units and magnitudes [16]. Consequently, it is

crucial to normalize the QoS values to a uniform range during

the process. We employ the normalization function outlined

in Equation 4.18 to map the QoS values into a standardized

range from 0 to 1.

𝑁𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢
=
QoSps𝑖𝑗𝑢 − 𝑄𝑚𝑖𝑛(𝑝)

𝑄𝑚𝑎𝑥(𝑝) − 𝑄𝑚𝑖𝑛(𝑝)
 (13)

𝑄𝑚𝑖𝑛(𝑗, 𝑝) = 𝑀𝐼𝑁𝑠𝑖∈𝐶𝐿𝑗 ,𝑢∈1,..,𝑙 (𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢) (14)

𝑄𝑚𝑖𝑛(𝑗, 𝑝) = 𝑀𝐼𝑁𝑠𝑖∈𝐶𝐿𝑗 ,𝑢∈1,..,𝑙 (𝑄𝑜𝑆𝑝𝑠𝑖𝑗𝑢) (15)

4.2 Entropy and Cross-Entropy for Hesitant fuzzy set

Actually, the Entropy is leveraged to compute the weights of

criteria. However, Cross-Entropy is applied to compute the

divergence between two probability distributions. Hence, we

leverage the Cross-Entropy for computing divergence

between QoS realizations and best and/or worst solutions.

According to [Xu and Xia, 2012], Cross-Entropy for hesitant

fuzzy set is defined as follow: Let ℎ𝑆𝑗1(𝑝) and ℎ𝑆𝑗2(𝑝) be two

HFEs of the services 𝑆𝑗1 and 𝑆𝑗2 respectively, then the Cross

Entropy C(ℎ𝑆𝑗1(𝑝), ℎ𝑆𝑗2(𝑝)) is specified as:

1

𝑙𝑇0
∑ 

𝑙

𝑢=1

 

(
(1 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢)𝑙𝑛 (1 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢) + (1 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢)𝑙𝑛 (1 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢)

2
−

2 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢
2

𝑙𝑛 (
2 + 𝑡𝑄𝑜𝑆𝑝𝑠1𝑗𝑢 + 𝑡𝑄𝑜𝑆𝑝𝑠2𝑗𝑢

2
) +

(1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1))) 𝑙𝑛 (1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1)))

2
+

𝐶 (ℎ𝑠𝑗1(𝑝), ℎ𝑠𝑗2(𝑝)) =
(1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1))) 𝑙𝑛 (1 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1)))

2
−

(
2 + 𝑡(1 − 𝑄𝑜𝑆𝑝𝑠1𝑗(𝑙−𝑢+1) + 1 − 𝑄𝑜𝑆𝑝𝑠2𝑗(𝑙−𝑢+1))

2

ln (
2 + t(1 − QoSps1j(l−u+1) + 1 − QoSps2j(l−u+1))

2
)))

 (16)

Where:

T0 = (1 + t)ln (1 + t) − (2 + t)(ln (2 + t) − ln (2)), t ≥ 0.

 (17)

According to [Xu and Xia, 2012] the entropy (or disorder

quantity) of a fuzzy hesitant set is defined as follows: Let h

be a HFE, then entropy is specified as:

Esjiq(h) = 1 −
2

lT0
∑ 

l

u=1

 

(
(1 + tQoSps1ju)ln (1 + tQoSps1ju) + (1 + t(1 − QoSps1j(l−u+1))) ln (1 + t(1 − QoSps1j(l−u+1)))

2

−
2 + tQoSps1ju + t(1 − QoSps1j(l−u+1))

2
ln
2 + tQoSps1ju + t(1 − QoSps1j(l−u+1))

2
)

 (18)

4.1 Model of Entropy weights

In general, resolving the service selection problem

necessitates an understanding of Quality of Service (QoS) and

its significance in terms of QoS weights. Various approaches

require users to specify their QoS preferences. Nevertheless,

these methods are impractical as users often lack the necessary

knowledge to assign weights to each QoS attribute. Therefore,

we adopt Entropy theory [27] to determine the QoS weights.

The higher the weight, the more important the QoS criterion

is.

wp
′ =

1 − Ep

m− ∑  r
p=1  Ep

 (19)

Ep =
1
𝑚⁄ ∑  m

i=1  Ehip , p = 1,2, … , r. (20)

Ehip = 1 − C(hip, hip
c) (21)

5. PROPOSED APPROACH

Our proposed approach is based on two algorithms. First, the

’ServiceLocalOptimization’ algorithm (SLO) enables us to

rank the Web services. This algorithm is inspired from

EntropyServiceRanking (ESR) proposed in [30]. In SLO we

utilize the deviation degree during the ranking process to

tackle the situations where services are equal. Then, we

employ the algorithm called the Group Learning-based

11

Composition (GLC), depicted in algorithm 2, to select the

TopK compositions.

5.1 Local optimization

The algorithm 1 (SLO) is presented below.

Algorithm 1 ServiceLocalOptimization

Input: < CL1, ..., CLn >,

ℎ𝑝
+= 1 // positive ideal solution,

ℎ𝑝
− = 0 // negative ideal solution

 Output: RankedCL1, ..., RankedCL𝑛

Begin

1: for p=l to r do

2: 𝑤𝑝= compute-weight() // The weight is computed

according to Equation (14)

3: end for

4: for j=l to n do

5: for i= l to m do

6: 𝑐+(𝑆𝑗𝑖) = ∑ (𝑤𝑝 ∗ 𝐶(ℎ𝑆𝑗𝑖(𝑝), ℎ𝑝
+)𝑟

𝑝=1

7: 𝑐−(𝑆𝑗𝑖) = ∑ (𝑤𝑝 ∗ 𝐶(ℎ𝑆𝑗𝑖(𝑝), ℎ𝑝
−)𝑟

𝑝=1

8 𝐶(𝑆𝑗𝑖)=
𝑐+(𝑆𝑗𝑖)

𝑐−(𝑆𝑗𝑖)+ 𝑐
−(𝑆𝑗𝑖)

9: end for

10: RankedCL𝑗=ascending-sort (CL𝑗 ,C (𝑆𝑗𝑖),
𝜎
→)

11: end for

12: return <RankedCL1, ..., RankedCL𝑛>

13: end

 We start by leveraging Equation 19 to compute the

weight 𝑤𝑝of each attribute p (line 1,3).

 We employ the Equation 16 compute the Cross-

Entropy between the service 𝑆𝑗𝑖and ℎ𝑝
+ that

represent the positive ideal solution (resp. the

negative-ideal solution ℎ𝑝
−) (line 4 to 5).

 We compute the closeness degree between the

service 𝑆𝑗𝑖 and the ideal solution (line 8).

 We rank the services of each task based on c(𝑆𝑗𝑖) in

ascending order. The smaller the value of c(𝑆𝑗𝑖), the

better the rank. If two services ties in terms of c(𝑆𝑗𝑖)

we rank them according the deviation degree see

Equation 11 (line 10).

 We return the ranked classes in line 12.

5.2 Group Learning based Composition

After completing the first process and retrieving the best

services and minimizing the search space, the second sub-

module is executed to perform the composition process by

forming the compositions according to workflow and

selecting the best one based on the user requests. Therefore,

we propose algorithm 2 called Group Learning-based

Composition (GLC). This algorithm is based on the Group

Learning Algorithm (GLA) proposed by [20].

GLA is a recent metaheuristic implemented based on the

interactions of individuals within a group and the influence

of group leader on group members. This algorithm mimics

the impact of group leaders and managers on the ability of

group members. This algorithm divides the population into a

number of equal groups and selects certain individuals as the

group leaders based on their fitness. Additionally, it

identifies the manager, who is the individual with the best

fitness in the whole population.

This population-based metaheuristic effectively addresses

the limitations of multiple metaheuristics. It is characterized

by its flexibility and simplicity of implementation, requiring

only a few control parameters. This algorithm proposes a

great exploration and exploitation and achieves a fine

balance between the two, as these parameters are adjusted by

the number of groups.

In [20], the researchers modeled the influence of the group

manager on the group leader by the Equation 22.

𝐿𝐴 = (𝑥 − 𝑦) ∗ 𝑟. (22)

LA represents the updated group leader after being

influenced by the manager. The variable x denotes the group

leader, which is the individual with the highest fitness within

the group, while y refers to the manager, which is the

individual with the highest fitness across the entire
population. Additionally, r represents a random number

generated within the range [0, 1].

Furthermore, the influence of the group leader on the

population is represented mathematically by Equation 23.

𝑁𝑒𝑤_𝑝𝑜𝑝(𝑖) = (𝐿𝐴 − 𝑝𝑜𝑝(𝑖)) ∗ 𝑟

Where 𝑛𝑒𝑤_𝑃𝑜𝑝 (𝑖) represents the updated individual after

it is affected by the LA found in Equation 22, Moreover, the

external impact is represented in this algorithm by the

mutation operation (see Figure 2).

In our proposed algorithm, we have enhanced Equations of

GLA to deal discrete optimization problems in the following

manner:

𝑋𝐿𝑔= Find_Service(⌊(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝐿𝑔) − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝑀)) ∗

𝑟⌋) (24)

In this context, 𝑋𝐿𝑔 represents the updated service leader in

the group g, influenced by the manager 𝑋𝑀. The variable r is

a random number generated within the range [0, 1]. The

function Position () is employed to identify the location of

service X, while the Find_Service() function is utilized to

retrieve the service based on its position (see Equation 24).

12

New_X𝑔𝑖 = Find_Service(⌊(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝐿𝑔) −

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝑖)) ∗ 𝑟⌋) (25)

On the other hand, New_X𝑔𝑖 is the new service individual i

of the group g after it is affected by the new service leader

𝑋𝐿𝑔.

New_indiv_X𝑔𝑖= = Find_Service(⌊𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(New_X𝑔𝑖) −

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑋𝑀)) ∗ 𝑟⌋) (26)

Where New_indiv_X𝑔𝑖 is the new service individual I within

the group g after it is affected by the service manager 𝑋𝑀.

Figure 2: GLA [20]

Algorithm 2 GLC

Input: RankedCL1, ..., RankedCLn , k , MaxIter ,

PopSize, mutation_rate, group_number.

Output: BestComposition

Begin

1: for i=1 to PopSize do

2: 𝑋𝑖= init(< RankedCl1, ..., RankedCln >, k) //

Initialize_population

 3: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖 = ComputeGQC(𝑋𝑖);

 4: end for

 5: 𝑋𝑀 = find_manager(𝑋𝑖, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖)

 6: 𝑋𝐺𝑔 = Divide_population (𝑋𝑖 , group_number)

 7: for g=1 to group_number do

 8: 𝑋𝐿𝑔= finde_leader(𝑋𝐺𝑔 g, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑔)

 9: end for

10: while (t ≤ MaxIter) do

11: for g=1 to group_number do

12: 𝑋𝐿𝑔 = Update1 (𝑋𝐿𝑔 , 𝑋𝑀)

13: for i=1 to PopSize do

14: New_X𝑔𝑖 = Update2 (𝑋𝐿𝑔 , 𝑋𝑔𝑖)

 15: New_indiv_X𝑔𝑖 = Update3

 (𝑋𝑀 , New_X𝑔𝑖)

 16: Mutation (

New_indiv_X𝑔𝑖 , mutation_rate)

 17: end for

 18: end for

19: 𝑋𝑀 = find_manager(New_indiv_X𝑖 ,

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑋 𝑖)

20: end while

21: return 𝑋𝑀

22: end

The GLC Algorithm is explained as follows:

Lines 1-4: We initialize all the population based on top-k

elements (i.e., k in algorithm 1) of the ranked classes, where

the population represents the possible compositions. Then,

we compute the GQC for each composition.

Line 5: We designate the manager of the population.

Line 6: We divide the population into a number of

13

 groups.

Lines 7-9: We define a group leader for each group.

Lines 10-19: This constitutes the loop of a maximum

iteration count, MaxIt.

Lines 11-18: This loop iterates over different groups.

Line 12: The function Update1 update the leader, designated

as 𝑋𝐿𝑔 , of each group by employing Equation 24.

Lines 13-17: This loop iterates over the individuals within

the population.

Line 14: The function Update2 updates the individuals based

on Equation 25 .

Line 15: The function Update3 adjusts the individuals based

on Equation 26.

Line 16: Random change in the position of some individuals

using mutation.

Line 19: We designate the manager of the population.

Line 21: return the best composition.

6. EXPERIMENTAL STUDY

To assess the performance of the proposed service

composition optimization approach, in terms of Global

Quality of Service (QoS) Conformance and computation time

(measured in milliseconds) We conduct a series of

experiments using two different types of datasets.

The first dataset utilized is a real-world dataset based on the

example provided in [15], derived from a real-world QWS

dataset collected by Al-Masri and Mahmoud (2007) [2]. We

generate 10 QoS realizations (l) of the response time and

reliability according to a Gaussian distribution. The range of

each task is presented in Table 5, where 𝜇 is the mean and 𝜎

is the standard deviation. The fidelity is uniformly generated

between 1 and 4. Additionally, we set the global constraints of

response time, reliability, and fidelity as 2400 ms, 0.025, and

3.

It is worth mentioning that all algorithms were implemented

using the Java programming language. Experiments were

performed on a Windows 7 with an Intel I3 core 2.53GHz

processor, 4 GB RAM.

Table 3: Configuration of Gaussian distributions [15].

Task Response Time Reliability

Electronic

Product Finder
𝜇∈[78,117]

𝜎∈[0,30]

𝜇∈[0.63,0.95]

𝜎=√𝜇(1 − 𝜇)

SendSMS 𝜇∈[1046,1569]

𝜎∈[[0,435]

𝜇∈[[0.45,0.80]

𝜎=√𝜇(1 − 𝜇)

SmartPayment 𝜇∈[117,175]

𝜎∈[0,45]

𝜇∈[0.60,0.90]

𝜎=√𝜇(1 − 𝜇)

CreditCard

Validator
𝜇∈[254,48]

𝜎∈[0,105]

𝜇∈[0.48,0.71]

𝜎=√𝜇(1 − 𝜇)

UPSTracking 𝜇∈[74,111]

𝜎∈[0,30]

𝜇∈[0.62,0.94]

𝜎=√𝜇(1 − 𝜇)

In these experiments, we varied the number of candidate web

services m from 100 to 500. In addition, the number of Top

services (k) to 10. We leveraged 3 QoS attributes (i.e.,

response time, availability, and fidelity), and we generate 10

realizations (number of instances) per QoS attribute.

Furthermore, we varied the number of populations from 100

to 500 and the number of iterations from 100 to 500.

Table 4: GQC vs. population size and number of services

(m).

 Iterations =100

 Popsize

=100

Popsize

=300

Popsize

=500

n=5,

m=100,

r=3,

l=10,

k=10

GLC 0.93 0.92 0.92

GWC 0.91 0.91 0.92

IM_ABC 0.50 0.54 0.54

n=5,

m=200,

r=3,

l=10,

k=10

GLC 0.92 0.94 0.94

GWC 0.94 0.94 0.94

IM_ABC 0.45

0.44

0.50

n=5,

m=300,

r=3,

l=10,

k=10

GLC 0.92 0.94 0.93

GWC 0.93 0.95 0.95

IM_ABC 0.36 0.45 0.50

Table 5: GQC vs. number of iterations and number of

services (m).

 Popsize =300

 MaxIter

=100

MaxIter

=300

MaxIter

=500

n=5,

m=100,

r=3,

l=10,

k=10

GLC 0.91 0.91 0.90

GWC 0.91 0.91 0.91

IM_ABC 0.42 0.54 0.54

n=5,

m=200,

r=3,

l=10,

k=10

GLC 0.94 0.93 0.94

GWC 0.94 0.94 0.93

IM_ABC 0.56 0.60 0.54

n=5,

m=300,

r=3,

l=10,

k=10

GLC 0.91 0.94 0.94

GWC 0.92 0.93 0.95

IM_ABC 0.45 0.58 0.56

In Table 3 and 4, we conduct a comparative analysis between

our proposed approach and the GWC approach [30] and

IM_ABC approach [23] according to GQC. GLC is more

powerful than IM_ABC approach in terms of GQC in all

experiments presented in Tables 3 and 4. However, GQC

performance of GLC is almost equal to the GWC approach.

Table 6: GQC vs. number of groups (G).

 G=4 G=10 G=20

n=5,m=100,r=3,l=10,

Popsize=100

0.91 0.90

0.88

n=5,m=100,r=3,l=10,

Popsize=300

0.91 0.90

0.91

14

To explore deeper into the analysis of GWC, we investigate

the influence of the number of groups, which plays a crucial

role in balancing exploration and exploitation. Thus, we

conduct experiments with different group sizes, setting G to 4,

10, and 20, while tracking the GQC metric. Our observations

reveal that as the number of groups increases, particularly

when the population size is small, the solution tends to deviate

from the near-optimal solution. For instance, after 100

iterations with a population size of 100 and G set to 4, the

GQC of the near-optimal solution is recorded as 0.91.

However, with G set to 20, the GQC value shows a

divergence, decreasing to 0.88.

Figure 3: The effect of iterations on the CPU time.

Figure 3 displays the mean execution durations

corresponding to the experiments detailed in Table 4. In this

study, we assume the pre-computation of GQC. The results

reveal that our proposed method exhibits a speed advantage

over IM_ABC by approximately 0.7 seconds. Additionally,

our approach demonstrates a marginal improvement in speed

compared to GWC, with a difference of approximately 0.2

seconds. This outcome is primarily attributed to the

computation of three near-optimal solutions within the

GWC.

7. CONCLUSION

This paper introduces an optimization technique for web

service composition under uncertain environment. Our

approach consists of two main steps: firstly, employing local

optimization for lowing the number of similar services by

sorting and selection the most pertinent ones. Secondly,

leveraging a global optimization to determine the near-

optimal service composition that satisfies the user constraints.

In future research, we intend to explore the correlations

between both QoS user requirements and QoS of the web

services. Additionally, we aim to consider the QoS of Cloud

services (SAAS), such as Disc storage performance, I/O

Memory performance, and data center regions into our

approach for cloud composition.

REFERENCES

1. Ahanger, T. A., Dahan, F., & Tariq, U. (2023).

Hybridizing Artificial Bee Colony with Bat Algorithm

for Web Service Composition. Computer Systems

Science & Engineering, 46(2).

2. Al-Masri, E., & Mahmoud, Q. H. Discovering the best

web service. In Proceedings of the 16th international

conference on World Wide Web 2007, May. pp. 1257-

1258.

3. Bei, L., Wenlin, L., Xin, S., & Xibin, X. (2024). An

improved ACO based service composition algorithm

in multi-cloud networks. Journal of Cloud

Computing, 13(1), 17.

4. Barkat, A., Kazar, O., & Seddiki, I. (2021). Framework

for web service composition based on QoS in the multi

cloud environment. International Journal of Information

Technology, 13, 459-467.

5. Chattopadhyay, S., & Banerjee, A. (2020). QoS-aware

automatic Web service composition with multiple

objectives. ACM Transactions on the Web

(TWEB), 14(3), 1-38.

6. Dahan, F. (2023). Neighborhood Search Based

Improved Bat Algorithm for Web Service

Composition. Computer Systems Science &

Engineering, 45(2).

7. Dahan, F., & Alwabel, A. (2023). Artificial Bee Colony

with Cuckoo Search for Solving Service

Composition. Intelligent Automation & Soft

Computing, 35(3).

8. Du, M. (2020). An improved genetic algorithm for web

service composition optimization. World Scientific

Research Journal, 6(10), 369-379.

9. Etchiali, A., Hadjila, F., & Bekkouche, A. (2023). An

intelligent bat algorithm for web service selection with

QoS uncertainty. Big Data and Cognitive

Computing, 7(3), 140.

10. Ghobaei-Arani, M., & Souri, A. (2019). LP-WSC: a

linear programming approach for web service

composition in geographically distributed cloud

environments. The Journal of Supercomputing, 75(5),

2603-2628.

11. Hadjila, F., Belabed, A., & Merzoug, M. (2020).

Efficient web service selection with uncertain

QoS. International Journal of Computational Science and

Engineering, 21(3), 470-482.

12. Hamzei, M., Khandagh, S., & Jafari Navimipour, N.

(2023). A quality-of-service-aware service

composition method in the internet of things using a

multi-objective fuzzy-based hybrid

algorithm. Sensors, 23(16), 7233.

13. Haytamy, S., & Omara, F. (2020, February). Enhanced

qos-based service composition approach in multi-

cloud environment. In 2020 International Conference on

Innovative Trends in Communication and Computer

Engineering (ITCE) (pp. 33-38). IEEE.

GLC GWC IM_ABC

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Popsize =100 MaxIter=100 Popsize =100 MaxIter=300

Popsize =100 MaxIter=500

15

14. Hosseinzadeh, M., Tho, Q. T., Ali, S., Rahmani, A. M.,

Souri, A., Norouzi, M., and Huynh, B. (2020). A hybrid

service selection and composition model for cloudedge

computing in the internet of things. IEEE Access, Vol.

8, pp. 85939–85949. Retrieved from

https://doi.org/10.1109/ACCESS.2020.2992262 doi:

10.1109/ACCESS.2020.2992262

15. Hwang, S. Y., Hsu, C. C., & Lee, C. H. (2014). Service

selection for web services with probabilistic

QoS. IEEE transactions on services computing, 8(3),

467-480.

16. Kudermetov, R., Polska, O., Shkarupylo, V., &

Shcherbak, N. (2020, September). Normalization

Techniques Comparison for QoS-based Web Services

Selection by LSP Method. In 2020 IEEE 5th

International Symposium on Smart and Wireless Systems

within the Conferences on Intelligent Data Acquisition

and Advanced Computing Systems (IDAACS-SWS) (pp.

1-4). IEEE.

17. Liao, L., Wang, S., & Wu, J. (2023, May). Research on

web service composition selection based on QoS

metrics. In 2023 15th International Conference on

Advanced Computational Intelligence (ICACI) (pp. 1-8).

IEEE.

18. Poryazov, S., Andonov, V., Saranova, E., & Atanassov,

K. (2022). Two approaches to the traffic quality

intuitionistic fuzzy estimation of service

compositions. Mathematics, 10(23), 4439.

19. Purohit, L., Rathore, S. S., & Kumar, S. (2023). A QoS-

Aware Clustering based Multi-layer Model for Web

Service Selection. IEEE Transactions on Services

Computing.

20. Rahman, C. M. (2023). Group learning algorithm: A

new metaheuristic algorithm. Neural Computing and

Applications, 35(19), 14013-14028.

21. Remaci, Z. Y., Hadjila, F., Echialli, A., & Merzoug, M.

(2021). Dynamic Web Service Selection Based on

Score Voting. In Advances in Computing Systems and

Applications: Proceedings of the 4th Conference on

Computing Systems and Applications (pp. 185-195).

Springer International Publishing.

22. Sefati, S., & Navimipour, N. J. (2021). A qos-aware

service composition mechanism in the internet of

things using a hidden-markov-model-based

optimization algorithm. IEEE Internet of Things

Journal, 8(20), 15620-15627.

23. Seghir, F., Khababa, A., & Semchedine, F. (2019). An

interval-based multi-objective artificial bee colony

algorithm for solving the web service composition

under uncertain QoS. The Journal of

Supercomputing, 75, 5622-5666.

24. Seghir, F. (2021). FDMOABC: Fuzzy discrete multi-

objective artificial bee colony approach for solving the

non-deterministic QoS-driven web service

composition problem. Expert Systems with

Applications, 167, 114413.

25. Tiwari, R. K., & Kumar, R. (2021). G-TOPSIS: a cloud

service selection framework using Gaussian TOPSIS

for rank reversal problem. The Journal of

Supercomputing, 77, 523-562.

26. Torra, V. (2010). Hesitant fuzzy sets. International

Journal of Intelligent Systems, Vol. 25, No. 6, pp. 529-

539.

27. Xu, J., Guo, L., Zhang, R., Hu, H., Wang, F., & Pei, Z.

(2018). QoS-aware service composition using fuzzy set

theory and genetic algorithm. Wireless Personal

Communications, 102, 1009-1028.

28. Xu, Z., & Xia, M. (2012). Hesitant fuzzy entropy and

cross‐entropy and their use in multiattribute decision‐

making. International journal of intelligent

systems, 27(9), 799-822.

29. Xue, Y., Wang, J., & Jing, W. (2023). An Enhanced

Energy-Efficient Web Service Composition

Algorithm Based on the Firefly Algorithm. Journal of

Database Management (JDM), 34(1), 1-19.

30. Yasmina, R. Z., & Fethallah, H. (2022). Uncertain

service selection using hesitant fuzzy sets and grey

wolf optimisation. International Journal of Web

Engineering and Technology, 17(3), 250-277.

31. Youssef, A. E. (2020). An integrated MCDM approach

for cloud service selection based on TOPSIS and

BWM. IEEE Access, 8, 71851-71865.

32. Zeyneb Yasmina, R., Fethallah, H., & Fadoua, L. (2022).

Web service selection and composition based on

uncertain quality of service. Concurrency and

Computation: Practice and Experience, 34(1), e6531.

